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ABSTRACT

The main result of this paper is the following theorem: Let p,q e n

H = H(p,q) e C2(Rn,R) and let H -1(1) be the boundary of a compact

neighborhood of 0 with "H A 0 on H 1 (1). If further p H > 0 on

H 1 (1) when p 0, then the Hamiltonian system of ordinary differential

equations

* p = -Hq(p,q), q = Hp(p,q)

possesses a periodic solution on H-1 (1). The proof involves minimax

arguments from the calculus of variations.
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SIGNIFICANCE AND EXPLANATION

* Hamiltonian systems of ordinary differential equations model the motion

of a discrete mechanical system when no frictional forces are present. A

basic property of such systems is that "energy" is conserved. Therefore

solutions of Hamiltonian systems lie on surfaces of fixed energy. The main

result of this paper is a fairly general criterion for such a surface to

possess a periodic solution.
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PERIODIC SOLUTIONS OF PRESCRIBED ENERGY FOR A CLASS OF HAMILTONIAN SYSTEMS

Vieri Benci * and Paul H. Rablnowltz"

Introduction

Let p,q e VP and H H(p,q) :R2n + R be smooth. The problem to be studied here

is the existence of periodic solutions of the associated Hamiltonian system of ordinary

differential equations

(HS) - Hp,q)

where " Setting z = (p,q), (HS) can also be written more succinctly as

z JH z(z)

where J = ( ~ Z ) and 7 is the n dimensional identity matrix. As is well known

any solucion z(t) of (HS) satisfies H(z(t)) E constant, i.e. the "energy" H is an

* integral of the motion. Normalizing this constant to be 1, set D E H 1(1). For

&,n e Rj , E * n will denote their inner product. Our main result is

Theorem 1: Suppose H satisfies

(H1 ) H e C2(R2n,R),

(H2 ) D is the boundary of a compact neiahborhood of 0 and Hz  0 on D (i.e. D is

a manifold).

(H 3 ) p * Hp # 0 if p # 0.

Then (HS) possesses a periodic solution on V.
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''r,. I hs C tVtCal predecessors. Seifert [11 considered Hamiltonians of the form

{H(pq) 1aij(q)pip + V(q)
i,j=1

a- rn ,,of kinetic and potential energy terms where S fq e R"IV(q) C 1) is

w-" P , <-to !-he closed unit ball in e and 38 is a manifold, the matrix

; ti nmiforinly positive definite in 8, and H is smooth. Using geodesic

Su':- s 'm reonetry, Seifert proved there exists a periodic solution of (HS) of a

,-11 tye on V. Cenoralizinq his arquments, Weinstein [21 permitted a more general

'n'v- ernmry -rn' K(P,a) where for fixed q, K is even and convex in p while Gluck

0!I -z, relaxed the condition on S merely requiring B to be compact with its

v -m-oy a manifold. See also Hayashi [4] and Benci [5] for results related to [3].

7.;r: C, uroach was mpde to (HS) in Rabinowitz [61 for H = K + V where V satisfied

1(1t'f- oction and p • Kp > 0 for p O 0. A case not covered by Theorem I but

t-. can he o Dtained by similar but simpler arguments was given in [71 in which V is

-: I.o u n I-i'iy a compact star-shaped neighborhood of 0.

71a !ffoerent direction from Theorem 1, there has been some recent work on the

y:iy ,f solutions of (HS) on V, generally when V bounds a convex region in

F
0
. Sre -.q. Ekeland-Lasry [8[, Ambrosetti-Mancini 9], van Groesen [10], Berestycki-

Li 3v-M-cin-Rif 111, and Fkeland [12].

,- J] pr,)vn Thorem 1 by a direct variational approach using minimax arguments.

.>.'. rplies in part on ideas from [5-6]. Let z(t) = (p(t),o(t)) he 2n periodic

A(z) f p qdt
0

,1 1 r- e cohtrined a3; a critical point of A restricted to M a 1-I(1

K2
K
C : -i i' ! "
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I.'- Tit : f His)dt

0

H(z) = H(z) on D and is suitably modified on I2P. This critical point is produced

as a minimax of Aim over an appropriate class of subsets of M. In this approach, the

unknown period appears as a Lagranqe multiplier.

The modified Hamiltonian H will be defined in I1 where some simple corollaries of

Theorem I will also be obtained. In 42 the functional analytical framework in which the

problem is treated is introduced. The properties of 9 and Al. such as the Palais-

Smale condition are dealt with in f3. Theorem I is proved in 14. A dual variational

argument is used in §5 to give an alternate approach to Theorem 1. In 16 a priori bounds

from above and below are obtained for the unknown period of any solution of (HS) in terms

of A(z). Lastly in 17, the results of 14 and 6 are used to prove a stronger version of

[ Theorem 1 with (H1 ) replaced by

(HI-) H e CI(a2nR)

An intriguing open question concerning (RS) is whether Theorem I remains true or is

false if hypothesis (H3 ) is omitted.

i

I
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I. The Modified Hamiltonian

For technical reasons that will become clear later, the Hamiltonian will he redefined

outside of a neighborhood of V. Suppose H satisfies (H1 )-(H3). Then H(0) < I and

H > I outside of the neighborhood of 0 hounded by D. Without loss of oenerality we can

assume H(0) < j- . Our initial modification of H will allow us to assume H ) 0, is a

multiple of IzI
2  

near 0, satisfies (HI)-(H3), and Hzz is uniformly hounded.

Indeed since H(0) < ± , p > 0 can be chosen so that P1zi 2 > if H(z) > 1 and
2 2

P-t1z 2 < _L if H(z) C 1. Let x e C (R,R) such that x(S) = 0 if s C ; x(sj = I
44

1 , X'1 1
if s > , and x'(s) > 0 if s e (- , -). Define

2zj 4 2)P 1j j

H(z) = X(H(z) - 1)[Pj 2 - H(s)) + H(z) + X(1 - H(z))[p- - H(s)]

Then H e C2 (Ryn,R), H = P 11zj2  near z = 0, and H = H near D. Moreover if

1(z) = 1, then z e V. To see this, suppose H(z) > 1. Then

H(z) = x(H(z) - 1)1p1z2 - H(s)] + H(z)

If H(z) > 2,(z) = P z 2 > > 1 while if H(z) e (1, ! ), H(z) ) H(z) > I. Similar

reasoning shows 1(z) < 1 if H(z) < 1. Thus H (1) = V. A related argument shows

H(z) > 0 if z # 0. It is clear that H satisfies (H1)-(H2). To verify (H3), by the

definition of X, it suffices to show that for p # 0,

(1.1) p H H (z) = {X'(H(z) - 1)I[112 - 1(z)] - x'( 1 
- H(z))[pl z12 - H(z)])p - H$(z)

+ (I - X(H(z) - 1) - X(1 - H(z)))p * Hp(Z)

+ 21p12 [x(1H(z) - 1)p + X(I - H(z))p -l] > 0

H-1 1 3
if z 1 [3 , 1. Again this follows from our choice of P and (H3 ).

Since D is compact, there is a 8 > 0 such that Izi 9 8 for z e V. Let

x e C (R,R) such that 1() = 1 for s C 2a, X(s) = 0 for s > 4B, and x'(s) < 0

for s e (28,48). Set

H(z) = x( zI) (Z) + ( - x( lzl));lzl 2

r Then it is easy to check that for p chosen so that z 2 ) H(z) for Iz e (2a,46),

I

-4
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possesses the properties verified above for H, H is a multiple of 1z12 for large

IZ, and satisfies

(H4 ) Hzz(z) is uniformly bounded.

Remark 1.2: The above arguments work equally well if H merely satisfies (Hj) and (H3)

in a neighborhood of D.

Next hypothesis (H3) will be used to decompose H into a sum of kinetic and

potential energy terms. Set U(q) = H(O,q) and K(p,q) K(z) E ;(z) - U(q). Note

that Kz) ) 0 via (H3 ) and K,U e c2  via (HI). Moreover

Proposition 1.3: K satisfies the following properties:

(Kj) K(0,q) - 0

(K2 ) P Kp(Z) > 0 if p # 0

(K3 ) Ip (z) I a1 (1 + Izi)

(41 K(z) 4 a1(1 + Izh)Ip!

(K5) lKq(z)I 4 a2 1Pl

(O Kzz(z) is uniformly bounded in R2n

(In (K3 )-(K5 ) and later, ai denotes a constant.)

Proof: (KO and (K2 ) follow from the definition of K and (H3), and (K3), (K6) from

(H4)- Since

id
(1.4) K(p,q) q f P 11

K~sp~qae - fp • Kp(sp,q)ds,
0 0

(K3 ) and (1.4) imply (K4 ). Similarly

(1.5) Kq(pq) = Hq(pq) - Hq(O,q) = f Hpq(sp,q)p ds
0

I.
so (H4) and (1.5) give (K5).

To define H, one final modification of H is required. Let
(q e R nIU(q) < s}

-5-
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By (H2), Uq $ 0 on 30l and there exist constants d,8 > 0 such that Uq(q) $ 0 and

(1.6) lUqV )I ) BU(q) if q e a1+2d\Q1-2d

Let 4 e C2  be defined for s < 1 + 2d such that

( O(s) = s, s C 1 + d

-.('2) 4U(s) ) 1, s < 1 + 2d

3 ) (s) = (S- (1 + 2d) 2-  s near 1 + 2d

te further extend 4 to all of R via 4(s) = - if s ) I + 2d. Finally define

V(q) E 4(U(q)) for q e 3" and

H(z) E K(z) + V(q)

Thus H is C
2 

where finite and if H(z) = 1, U(o) C V(q) C 1 by (2). Thus

V(q) = U(q) by (0 and H(z) = H(z). Consequently H-1(1) D.

We will find a periodic solution of

* (1.7) p 
= 

-Hq, q = Hp

on H-I(1). Hence it will be a periodic solution of (HS) on D.

To conclude this section, some estimates will be obtained for V. Let e e C(R,R)

such that

*(s) = 0, s < I - 2d

= 1, s > 1- d

and 41'(s) > 0 if s e (1 - 2d,1 - d). Set

Iu (q)v(q) = 4(v(g)) 1T5 T

observing that the * term vanishes if q e 0 -2 and *'(V(q)) vanishes if

* V(q) > 1 - d, it follows that v e c 1 (Rn,R).

Proosition 1.8: There is a constant y > 0 such that

(1.g) Vq(q) v(q) > 0 for all q e 0I+2d

and

* '1.10) Vq(q) V(q) Y V(q) for all q e a1+2d "21-2d

. . . . - .----



Proof: Inequality (1.9) is immediate from the definition of V and 2'To check

(1.10), note that if U(q) e (1 - d,1 + 2d), then V(q) U~q) by 2and *I(V(q)1 1

Therefore

(1.11) Vq(q) I V(q) - *'(U(q))IUq ;0 0 (1 - d)#'(U(q))

by (1.6). Thus to get (1.10), it suffices to show

(1.12) al~) s e (1o d,1 + 2d)

and this is immediate from 1 3

-7-



§2. Functional Analytical Preliminaries

The space in which (1.7) will be treated is the Hilbert space

E = (p,q)fp e L
2
(Sl,RN), q e w1 ,2 (S ,Rn),

E L 2(SIO ) * WI,2(SIT n )

where L
2
(S',R

)  
denotes the set of n-tuples of 2v periodic functions which are square

integrable, etc. For w e L
2
(Sl,Rn), let

S 27F
:'[ w] 21r w~t~dt.

0

Thus any z = (p,q) e E can be decomposed into ([p],[q]) + (p,q) where

2 1,2
(p,q) e L*W and

L2 (p e L2 (S1,1n)I(p] = 01
-1,2 -q e w1 ,2 (S1,R)[c1 = 0}

As inner product in F we take

21r

(zlz2) [(pt) P(t)) + (Dq" Dq )]dt +  
[cr] [q2 ]

F 0

dtwhere D E - and zI = (p1,g1 ) = (p ]
+ p1 ,[q1 ] + ql), etc. The norm in E will be

denoted by 1,1 and we will generally use the same notation for the norm in E*, the

dual space of E.

It is easy to see that DW1,2 : L is an isomorphism. Let D- 1 denote its
W

inverse. We define linear maps PO,P+,P- of E into E by

P
0
(p,q) E ( [p) , [q)

* and
(1 1 D-

( (p,q) (P Dq), (q * D p))

It is easy to verify that these maps are well defined and are (continuous) projectors on

S

-8-
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E satisfying p0 + p+ + P- = id, the identity map on E. Define E0  POE and

(p~q 8 t thn p= (p ± Dq ). Therefore
E P E. Note that if ( hnp 2( tD hrfr

(2.1) p± stDq±

Next observe that the spaces E0 , Et  are mutually orthogonal subspaces of E. E.g.

if z± (pt ,q±) e Et ,

(z +,Z-)E f 2 [(p+ * p + (Dq
+ 

- Dq-)]dt

0

21
= f [(Dq+ (-Dq-)) + (Dq + " 

Dq )ldt = 0

0

via (2.1).

For z = (p,q) e E, define the action integral as

21r

A(z) S f p • 4 dt
0

Then A 8 C(E,R) and writing z = z0 + z+ + z- and using (2.1) shows

=1n

(2.2) A(z) = f (p0 + p+ + p-) (Dq+ + Dq-)dt
0

ITr=f [p ~+ - - + -

f [(p+ Dq
+ ) 

+ (P Dq) +(p Dq ) + (p Dq- ]dt

0

21T

= I (Ip+ 2 + IDq+I 2 
- 1pI2 

- IDq- 2 )dt
0

1 +2 - 2
(1z I - Uz I)

Next define

1T z) - f (Z)dt

0

-9-



and

M = {z e E' (z) i}

3ur goal is to obtain a periodic solution of (HS) (or equivalently (1.7)) as a critical

point of AIM. As will be seen later, a critical point z of this constrained

variational problem satisfies z e CI(SIR 2n) and

(2.3) ; = AJH Z(Z

where X e R\{O}. Since (2.3) is a Hamiltonian system, H(z(t)) E constant. Thus z e M

implies z e V. Moreover since X 9 0, rescaling time in (2.3) yields a periodic

solution of (1.7) on V, i.e. the desired solution of (HS).

1

I-

4
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J3. Some Properties of M and AlM

This section studies several properties of I and M. It will be shown that M is

a C1'1 manifold which bounds a neighborhood of 0 in E and AIM satisfies a version

of the Palais-Smale condition.

For q e w1, 2 (S1,Rn), set

2w,. V(q) f v(qct))dt.
W0

Remark 3.1: The definition of V shows that if V(q) < , q(t) e a+2d for almost all

t e [0,2W] and since q e c(sI,1 n), q(t) e 81+2d for all t e E0,2w]. In particular

there is a constant M > 0 (and independent of q) such that Iql . 4 M.
L

For x e in , let

°(x) M inf Ix - yi
yeQ1+2d

Proposition 3.2: There exist constants SIM 1 such that for all x e 9I+2d'

(3.3) 01 L(X)
2 4 V(x) + M1 •

Proof: Let x e a1+2d* Using the implicit function theorem, it is not difficult to show

1+2+2d!that there is an e 0 > 0 such that if I(x) < coo there exists a unique x e au1+2d and

p > 0 such that

x - x - Wu (x)
q

Therefore there is a 82 > 0 such thatI2

(3.4) a2 0 # Ix xl O 8P if £(x) < 0

via the continuity of Uq and (1.6). Now

(3.5) U(x) - U(x) x- (x)(x - x) + o(Ix - x)

an x + a1+2d' Therefore by (3.4) - (3.5), for x near ag1+2d' e.g. X(x) ( C,

(3.6) IU(x) - U(;)I e. PIuq (;)12 + o(q) 4 K2 PLq

Now for £(x) 4 C, by ($3) and (3.6),

-2
V(x) - (U(x) - (1 + 2d))

- 2 
) (M2P)2

-11-



But P = I(x)tU q(Xf)
- .  

Therefore

(3.7) V(x) ) M3£(x)-2(3.73

if £(x) f e. If £(x) > £, £(x)-2 4 C-2 so

V(x) + M3 e-2 ) M 3£(x)-2

Thus (3.3) obtains with M2 = M3e-2 and =M 3

The estimate (3.3) will he used next to show that V(q) < - implies that q(t)

avoids 31l+2d.

Proposition 3.8: Let q e w1, 2 (s1,Rn) satisfy V(q) < -. Then there is an

qM = M(1qwl,2 ,V(q)) > 0 such that X(q(t)) ) M for all t e [0,21t).

Proof: Since q is 21 periodic, by translating t it can be assumed that

£(q(0)) = min £(q(t)) E 14

te[0,21]1

4By the Cauchy-Schwarz inequality,

(3.9) jq(t) - q(O)j f t 14j(T)dT C t 1/2Iql1,2
0 w

Since £ is Lipschitz continuous (with constant 1),

(3.10) Lt(q(t)) - I(q(0))l • jq(t) - q(O)I 4 t1 /21qlw1,2

Therefore

(3.11) £(q(t)) 4 11 + t1/2 qlw1,2

We can assume lql 1,2 > 0 for otherwise the result is trivial. By (3.3) and (3.11),
W

I

I1

I.

.|- . ..



2x2

(3.12) - > (q) ~ (Bl(q(t))- M1 )dt

0

*1 2W 1
/
2
1q1 1,2 )

2
d

r> - (11+ t -qldt
0 w

a I 2w (i 2 + t q1
2
1  2

) 1
d -

M

0 w

1 2 lq 1 ,
2

- log(1+ W M
Vq 1,221

W

from which the result follows.

Remark 3.13: Proposition 3.8 implies that the domain of V is

{q e w '2 (S1,')jq(t) e ii+2d for all t e [0,2w]}.

The smoothness of V will be established next.

Proposition 3.14: V e C 2 
on the domain of V.

Proof: Let q e w
1
'
2
(S

1
,R") with V(q) < a. Let 6 - inf L(q(t)). Then 6 > 0 by

te[0,2w]
Proposition 3.8. Let q e W1

'
2
(S

1
,3!p) with 1q 1,2 4 

p
. If p is sufficiently small,

Il L . 6/2. Therefore since V e c2 (al+2dR),
L

(3.15) V(q + q) = V(q) + V (q)j + -Vqq(q)(qq) + 0(q1
2)

as q 
+ 

0 uniformly for t e [0,2w]. The definition of V, (3.15), and the compact

embedding of w 12(Sl,Rn) in C(S
1,i0) then readily imply that V is Frechet

differentiable at q with

1
V'(q)q f ''(q)q dt

0

V'(a) is continuous, (V'(q))' E V"(q) exists,

2?r
V"(q) (q,) 271 f v"(g) (;,;)dt

0

and V"(q) is continuous.

-13-
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For z e E, set

2w
K(z) j J K(z)dt0

Proposition 3.16: K e C'I"(E,R), (i.e. K is Frechet differentiable and its Frechet

derivative is Lipschitz continuous).

Proof: Since K e C2 (*2n,R), given any z,i e Rn by Taylor's Theorem,
1

(3.17) K(z + ) - K(z) + KZ(z)r - Kzz(z + 8e)(r,O)

for some e e (0,1). By (K6 ) of Proposition 1.3, Kzz is uniformly bounded. Therefore

there is a constant M3 > 0 such that

(3.18) tK(z + 4) - K(z) - K z ( 43 I12

for all z,C e R2n . Choosing z,r. e E, (3.18) implies

2w M3 2 2

(3.19) IK(z + 1 - K(z) - K" z) dtl g L 1 2 • M4112

In particular for z fixed, given any e > 0, if C is sufficiently small, the right

hand side of (3.19) does not exceed c1 1. Hence K is Frechet differentiable and

K¢ '( ) W C 1- f2 K (z1Cdt .2w

To show that K' is Lipschitz continuous, note that

2w

(3.20) IK'(z + w) - K'(z)I . = sup I-f (Kz(Z + w) K z ¢dtE CeE'l1l0 2 0z

As in (3.17) by the Mean Value Theorem and (K6 ),

(3.21) IKz(z + w) - Kz(z)I 4 M51wI

for some constant M5 . Therefore (3.20)-(3.21) imply

-14-
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(3.22) IK'(z + w) - K'(z)I . ( M6 Iwo
E

i.e. K' is Lipachitz continuous.

By the definitions of K and V, Y = K + V. Recall that M = M(1). The next

three propositions study some properties of M.

Proposition 3.23: M is C1 ' 1 
manifold in E.

Proof: The smoothness assertions follow on combining Proposition 3.14 and 3.16 once we

show that M is a manifold, i.e. V'(z) 0 0 for all z e M. But if z = (p,q) with

p l0,

2v

Y'(z)(p,O) - p YP(z)dt > 0
0

via (K2 ) of Proposition 1.3. If p 0, then T(z) - V(q) - I via (K I) and by

Proposition 3.8, q(t) e Q1+2d for all t e [0,2W]. If q(t) e 0l-d for all

t e [0,2w], 1(q) 4 1 - d which is impossible. Thus since q e C(CsftN),

q(t) e 01+2d\1_d on a set Y of positive measure. By previous remarks,

v(q) e C(S',W') and (0,v(q)) e z. Hence by (1.9)-(1.10),

(3.24) Y'(z)(O,v(q)) - '(q)vlq) ) 4 f y(1 - d)dt > 0
2 y

Thus M is a manifold and the proof is complete.

Proposition 3.25: M is the boundary of a neighborhood of 0 in E.

Proof: in continuous on L2(S,3') * (q e W 1'2 (S1,p)IV(q) < m} which is an open set

in E. Therefore Y1(--,1) is open. Since H(0) = 0, 0 belongs to this set.

Proposition 3.26: M is bounded in L
2

(Sl,3
2

n).

Proof: Let (p,q) e M. Since V(q) < -, by Remark 3.1, there is an M > 0 such that

Eql M C 1. The definition of K implies it is a multiple of p12  for Izi near
L

Hence there are constants M1,1 > 0 such that

.K(z) M7 I-p1
2 

-Me

for all z e R2n. Therefore

-15-
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Kiz) ) . 1pI 2
2 - •

K W P1L 2 2w

Thus if z e M,

2M8) 21
,p,22 (iC + 1N

L 
7

The next proposition shows that AIM satisfies a version of the Palais-Smale

condition.

Proposition 3.27: AIM satisfies (PS)+ , i.e. if c > 0 and (zj) is a sequence in

E such that

i) zj e M,

(ii) A(zj) + c,

and (iii) A'(zj) - X 'V(zj) + 0 (in E*)

as j * where

X = (A'z ),T'lz ,Ilz )1-2

E

then (zj) has a convergent subseauence.

Proof: By (ii), there is an E e (0, 4) such that

(3.28) c - E 4 A(z.) 4 c + e

for all large j e N. Similarly by (iii), there is a wj e E with wj + 0 as j +

and

(3.29) A'(zj)C - ).Y'(z)f <wj>

where <.,.> denotes the duality between E* and E. Choosing = (pj,0) yields

A 2w

(3.30) A(zj) - 2 0 p

By (3.28) and the choice of 9, A(z.) ) while the left hand side of (3.30) goes to 0

I2

-16-
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as ) + since ((pjO)) is bounded in E. Consequently by (K2 )-(K3 ) of Proposition

1.3, Aj is positive and bounded away from 0 for large J. We restrict ourselves to

such j e I.

Choosing 4 - (En), (3.29) can be rewritten as

21 2

(3.31) f [(pj ) + (E )l]dt - [(H (z) E) + (H(z) * n)ldt - <w,C>
S0 2,f0 P qj

Setting wj - (uj,vj) e E i i.e. ul e L2 (SI,("') and vj e W-, 2 (Sl, ' ) and noting that

Pj e w 1'2 lS1I), (3.31) implies that

(3.32) (i) 4j - 2 (j) + vj

(ii) qj - 2, Hp(z) + uj -w I(zj) + uj

holds in the sense of distributions.

We claim that

2w

(3.33) f Kp(z • pjdt a > 0
0

for all j e H. Assuming (3.33) for now, (3.30) and (3.28) then imply Aj is bounded

away from -. Then by (3.32) (ii),

(3.34) j4L 2 < IKP(zj)L2 + Ii IL2

so (K3 ) of Proposition 1.3, the boundedness of (zj) in L2  (via Proposition 3.26) and

Remark 3.1 show that (qj) is bounded in W1'2 (SI,Rn). Proposition 3.8 then implies

there is an M > 0 independent of j such that X(q,(t)) ; M for all t e [0,2w], i.e.

the functions qj lie uniformly inside '1+2d" Therefore the functions (Vq(qj)) are

bounded in L and by (K5 ) of Proposition 1.3, Hq(zi) are bounded in L2 . Consequently

-17-
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66

the right hand side of (3.32)(i) converges strongly in W-1 "2 (SR n1) (along a

subsequence). Therefore pj converges strongly in W-1 '2 (S,Rn). Consequently

converges strongly in L2 (Sl,Rn). But Pj - [pj] + D-pj. Hence along a subsequence

pj converges strongly in L2 (S1 ,1 n). Lastly by (3.32) (1i), the same is true for a

subsequence of qj in W '2 (S1 ,Fn ) since (K3 ) of Proposition 1.3 implies that Kp is a

continuous map of L2 (SI,R2 n) to L2 (S1,Rn).

Thus Proposition 3.27 will be established once we show that (3.33) holds. Suppose

that (3.33) is false, i.e.

2m
(3.35) f K (Z) pdt + 0

0

for some subsequence of j's. This implies that Ipj 12 + 0 along this subsequence.

Indeed let Y1j f (t e [0,2r]IIpj(t)I < ol, y2j = (t e [0,21rfo Ipj(t)! • 48), and

Y3j = {t e [0,2w1r]pj(t)I > 481 where a 4 1 and 8 was defined together with H in

1I. On Y3 J' Pj. Kp(zj) = 2PIp i 2 . On Y2 J' both pl2  and p , Kp are bounded away

from 0. Therefore there is a constant a - a(o) such that Ip!2 4 a(o)p Kp on

Y2J" Combining these observations yields

-" 22

(3.36) f Ipj12dt 4 2w0 2 + a(a) pj • K(zj)dt
0 Y2j

-4 + (2;) - I P • K(zj)dt

Y 3j

Since a is arbitrary, (3.35)-(3.36) show 1pj 12 0 as j + . Then (K3 )-(K4 ) of

Proposition 1.3 imply

(3.37) K(zj) + 0

as j * - while (K3 ) and Proposition 3.26 show

2%
* (3.38) 1 pK (Zj)jpjdt +0

0

". -18-
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S .

as J + 
. Also by (K5 ),

2r

(3.39) If • v(q,)dtl K () q(Zj )1 2(qjnL 2  0

as j + since (Iv(qj)I 2) is uniformly bounded. By (3.37) and (W7 of Proposition

3.27,

(3.40) V(qj) * 1

as J +. Set
Aj (t e [o,2w]Ivlqj(t)7 I d)

Therefore

(3.41) V(qj) 1 (f V(qj(t)ldt + f V(qj(t)ldt)
2 j [0,2w]\ A

* 4 f V(qj(t))dt + 1 - d

Hence for large J, by (3.40)-(3.41),

(3.42) d - f V(qj(t))dt

Next by (3.32) (i) and (1.9),

2w d A 2%
(3.43) f P d V(q(t))dt - z H() * V dt + <Vv(q)>

0 j d 2w 0
o0

_ V [f Cv (q • l)dt- IK (z )I Iv(q)I J Iv I )I21 q )L]L2 J W4-1 ,2 v~qJ 1,2

*+As has been noted earlier, v(*) e C1(I,R) and IqI - 4 M for all (p,q) e M. Hence
L

there exists a constant M1 > 0 and independent of j such that

j 1,2 
• 

M 1 (1 j

w L
0g

Thus (3.42)-(3.43), (1.10), and (K5 ) of Proposition 1.3 imply that

-19-
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2wd(3.44) f p* d v(q i)dt ) A ' - o(1) - O(1)IJI L2

0

as j + -. On the other hand, by (3.32) and (3.38),

21T 2w

(3.45) f p. • d V(qj)dt 4 IV'(qj)I f 2 1 Ipjqjdt
0 L 0

2w 2w
SM2(AJ f JK (zJ)HIpjdt + f0 juJHpdt

A.o(1) + o(1)2

as j + . Combining (3.44)-(3.45) shows

(3.46) yd X ( o(1)l4l 2 + o(1)4 L 2

as j + . But then by (3.32) (ii),

(3.47) yd x o(1)IK (z2.)I + o(I)
P i L p

so (K3 ) of Proposition 1.3 and Proposition 3.26 imply X. + 0 as j + -, a
32

contradiction. Thus (3.33) has been verified and Proposition 3.27 has been established.

Two further technical results are needed in this section. Let L denote the duality

map between W-I' 2 (S1,R0) and W1 ,2(SIRn), i.e. L is defined by

(Lw,) w,2 = <w, >

for w e W-1 '2 (SI n ) and & e W1'2 (S1,Rn). Abusing notation somewhat, we will also

let L denote the duality between E and E * For z = (p,q) e E, define Piz p

and P2 z E q.

Proposition 3.48: P2 [
T ' is a compact map of M into WI, 2 (S1,Rn).

-20-



Proof: For z e M and (u,v) e F,

z < (z),> ((H Z(z) 11) + (H (ZV) v)dt ( (Z) E

Therefore

211
(3.49) (P2 L'(z),V) H (Z) vdt

0 q

The right hand side of (3.49) is a continuous linear functional on WI' 2 (S1 1
n).

Therefore there exists a unique e = 0(z) e W1 '2 (Sl,Rn) such that

1 2v

(3.50) (O(z),v) 12 = 2-j' H (z) - vdt

2w 0 Clearly G(z) = P2 L'(z). But the map z + Ha(z), M + L2 (Sl,R n ) is continuous and the

map Hq(z) + O(z), L2 (SI,Rn) + W1, 2 (S1,ln) is compact and linear. It follows that

P2 LY' is compact.

The final result in this section Is a version of the so-called "Deformation Theorem"

which is appropriate for our setting. A subset S C E will be called invariant if

z(t) P S implies that z(t + 6) e S for all t e [0,2n]. A mapping h S + E, where

S is invariant, will be called equivariant if h(T6 z) = Teh(z) for all 6 e [0,27]

where Te9 (t) = C(t + 6). For s e R, let

A s = {z e MIA(z) ) s}

For c 4 R, let

SK c  {z 8 MIA(z) = c and A'(z) - (A'(z),T'(z)) IV'(z)1 -2 '(z))
E

i.e. Kc is the set of critical points of AlM having critical value c.

0M

-21-
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Proposition 3.51: Let c, > 0. Then there iP an E (0, ) and n e c([O,1] x mM)

6C such that

10 n(1,) is equivariant

20 r(1,z) = z if A(z) 0 [c - C,c + El

30 In(1,z) - zi 4 1

40 If Kc = 0, n(I,Ac_ ) C Ac+e

50 P+T(1,z) = 8+(z)z
+ 

+ B+(z) where 
+ 

e C(M,[1,e]) and P 2 B
+  

is compact.

Proof: Most of the above assertions follow from standard arguments and therefore we will

be somewhat sketchy below. See e.g. [13-15] for more details. The function n is

determined as the solution of an ordinary differential equation of the form

W (A'(n), L' (n)) *

(3.52) dt w (r)L[A'(n) - E V1'(n)I(3.5) d =II',(rf)I 2

rj(0,z) = z e E

-. The scalar function w is Lipschitz continuous, 0 C w(z) 4 1, w(z) = 1 if z e M and

-- A(z) is near c. Note that the argument of Proposition 3.23 shows Y (s) is a manifold

for each s near 1, e.g. (s - i S C so. The function a(z) = 0 if IF(z) - i as

-.Lastly w(Tsz) = w(z) for all 0 8 [0,2w].

- Since the right hand side of (3.52) is Lipschitz continuous and is bounded by 1 (see

[14] or [15]), there exists a solution of (3.52) defined for all t e R and z e E.

Moreover In(t,z) - zi C 1 for t e [0,1], i.e. 30 holds. The form of (3.52) implies

that n(t,M) = M for all t e R. The properties of w show that n(1,.) satisfies 10-

20. Proposition 3.27 and a standard argument - see [13]-[15] imply 40. To prove 5 ° , note

* that P+LA'(z) = z+ . Therefore integrating (3.52) yields:

-22-
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(3.53) P + n(t,z) (exp f w(fl(s,z))ds)z-
0

t T
-f (exp f w(n(s,z))ds)w(r(T,z))(A'(n(T,z),f'(n(r,z)))

0 0 E

I*V'(ri(T,Z))R- P +L'T'(r)(T,Z))dT

Thus P~fl has the form stated in 50. The compactness of P 2B +follows via Proposition

3.48 and an argument from (16) since P2  and P + commute.

Remark 3.54: Let As {z e M!A(z) 4 9}. If we replace w(z) by -w(z) in (3.52), the

assertions of Proposition 3.51 still hold with 40 replace by rnl,A C ) C A C and 50 by

P fl,z) -8(z)z- + B-(z) where 08 e C(A4,[e 1, 11) and P2 B- is compact'

-23-
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14. Existence of a Solution

The proof of Theorem 1 will be completed in this section. The solution will be

obtained as a critical point of AIM by a minimax argument. Then a simple regularity

argument shows it is a classical solution of (HS). The following two lemmas pave the way

for the definition of the critical value c.

Lemma 4.1: Let M + E M n E+  and set

a inf A(z)

zem

Then a > 0.

Proof: By (2.2) for z = z+ e E+ , A(z) = l +z,2. Since by Proposition 3.25 M is the
2

boundary of a neighborhood of 0 in E, there is an r > 0 such that Iz| C r

implies z is interior to M. In particular for z e 3B (0) n E+ , A(z) ) - r2  Hence
r 2

a > 1 r2.
-2

Next let L+ be a two dimensional invariant subspace of F+. We further require

that L+ be such that there is a constant a, > 0 satisfying

* (4.2) Iz 2 4 a1iZd 2
L L

for all z e E0  E- L + . To find such an L+ , let e1,...,en denote the usual basis

in lh
. 

Then we can take

F 0 = span(ej.,0),(O, ek )I1 4 j,k C n)
+ 1

F+  span{((j + 1)sin jt ek - (I + -)cos jt e

(k + 1)cos it e 1(1 + -)sin it e ) CI 4 k,m • n, and j,L e N)
m

E- spani((j + 1)sin jt ekl + --)cos it ek )

((X + 1)cos it em, - (I + -!)sin it em)11 C k,m C n and j7  C N}

and L+ = span{(sin t el,-cos t el),(cos t el,sin t e)I

it is easy to verify that (4.2) holds.

-24-
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Lemma 4.3: If M4 M n (E- E0 * L+ ) and

Ei sup_ A(z)

then c < .

Proof: By Proposition 3.26, M is bounded in L2 (SI,R 2n). Therefore there is an

M, > 0 such that Uzi 2 4 m, for all z e M. In particular for z = z- + zo + z+ e M-,
L

by (4.2) we have

(4.4) 1z 2 alM1
L

Since L+  is finite dimensional, there is a constant a2 > 0 such that Nz + 1 a 2z+ ISinc 2 2

for all z+ e L+ . Hence
1 + 2 -22

(4.5) A(z) = (,Z
+ 12 - Hz'l

2
) 4 1 (ala 2M1 )

2

2 2

for z e M- and c (ala 2M 1).

Now the class of sets that will be used to find a critical point of AIM can be

introduced. Let

f th e c(M,M) 1 10 h is equivariant,

20 hz) = z if A(z) 0 10,a + 11,

30 h(z) maps bounded sets to bounded sets

40 P+h(z) = O(z)z+ + B(z) where B e C(M,[1,0 1), B0 = 0(h) > 1,

and P2B(z) is compact}.

A critical value c of A! can be produced by taking:

(4.6) c E sup inf+ A(h(z))
her zeM

4 To see this, note first that id e r. Hence by Lemma 4.1, c ; a > 0. To prove that

c < , the following intersection theorem which is of independent interest is required.

Theorem 4.7: Let h eIF. Then h(M+ ) f M 0 0.

-25-
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Proof: We will use a finite dimensional approximation argument. Let + and E be

2m dimensional invariant subspaces of E+,E -  respectively such that if

Em = Em & F0  E, U E = E. Such subspaces can be written down explicitly using the
mew

basis for E given following (4.2). Let Pm denote the orthogonal pro)ector of E

onto Em . Set h. - Pmh e c(M+ C Em,Em). Note that by properties 10-20 of F, hm is

equivariant and h,(z) = z on E0 n M. By Proposition 2.2 of [17] (where we take f to

be the orthogonal projector of E+ onto the orthogonal complement of L+ in E+

composed with hm), there is a point zm e M+n Em such that hm(zm ) e E- S E0 6 L+ . We

claim (zm) is a bounded sequence. Otherwise IZmI + - along a subsequence. But then

since z. e E+, A(zm- 1 Iz12 + -. Hence by property 20 of F, hm(zm) = Zm for large
2 m

m. Therefore zm e M+ r (E- S E0 * L+ ) = M r)L+ . Since M is bounded in L2 and L+

is finite dimensional, (zm) must be bounded in E, a contradiction.

Thus (zm) is a bounded sequence. By property 30 of F, (hm(zm)) is also

bounded. Property 40 of F implies that

(4.8) qm = (zm 
)-1 (P2 P

+ h M (z 
m
) - P2B(zm

)
)

Where zm = (pM,qm). The boundedness of (zm) and compactness of P2B show the second

term on the right hand side of (4.8) has a convergent subsequence. The boundedness of

hm(zm) and the fact that P+hm(zm) lies in L+ which is finite dimensional implies the

first term on the right hand side of (4.8) also has a convergent subsequence. It follows

then from (4.8) that qm has a convergent subsequence in W1,2 (Slfn). Therefore the

same is true for Pm = Dqm in L2 (Sl,Rn). Consequently zm + z 8 M+  and by the

continuity of h, hm(zm) + b(z) e M-. The Theorem is proved.

Corollary 4.9: c 4 a < .

* i Proof: By Theorem 4.7, h(M+)n M- $ for any h e r. Therefore for each h e F,

inf+ A(h(z)) < sup_ A(w) =a
[zem wem

via Lemma 4.3.

-
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Now we can prove

Theorem 4.10: c is a critical value of AIM.

Proof: If not, we can invoke Proposition 3.51 with E - min(la) obtainig

n1l,*) e C(M,M) and satisfying 10-50 of Proposition 3.51. But 10-30, 50, and our choice

of c imply that niw,° ) e r as is n(l,h) for any h e r. By 40 of Proposition 3.51,

(4.11) rn1,,) : AcC Ac+.

Choose h e r so that

(4.12) inf+ A(h(z)) ) c - £
zeM

By (4.11),

(4.13) inf A(n(1,h(z))) 0 c + c
zeal

But since n(l,h) e r, (4.6) shows

(4.14) inf A(n(1,h(z)) 4 c
zeM+

a contradiction. Thus c is a critical value of AIM.

Now finally we can complete the

Proof of Theorem 1: Since c is a critical value of AIM, there is a A e R and z e M

such that A(z) - c and A'(z) - AY'(Z) - 0, i.e.

I 21r A

(4.15) f ((p •) + (P • q) - - (H Iz) • P) + (H (z) • Q)]dt - 0
0 2v p q

for all (P,Q) e E. Equation (4.15) expresses the fact that z is a weak solution of

(2.3). The argument of (3.28)-(3.30) and our lower bound for c show A > 0. A simple

regularity argument - see the proof of Theorem 3.3 of (18) - shows z e cl(sI,R2n),r
i.e. z is a classical solution of (2.3). Therefore H(z(t)) E constant so '(z) - 1

implies that z(t) e D. Lastly since A 0 0, making the change of time scale t + At
I

shows z is a 2irA periodic solution of (HS). The proof is complete.

-27-
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15. A Dual Approach

In this section another existence proof will he given for a critical value of AIM.

This approach is "dual" to the previous one in the spirit of [19]. The critical value

obtained in this section may differ from that given by (4.6).

The new critical value will as in 14 be obtained as a minimax. Let

A (g e c(M,M)!g satisfies properties 10-30 of r

and 40 P-g - -(z)z + B-(z) where 0- e C(M,[61,I]),

B81(g) > 0, and P2B
-  is compact).

As in 14, there is an intersection theorem associated with A.

Theorem 5.1: If g e A, g(M-) n M+ 0 0.

Proof: Set gm = Pmg e c(M- r EmEm) where Em and Pm are as in the proof of Theorem

4.7. By properties 10-20 of A, gm is equivariant and gm(Z) = z on E° . Hence

Proposition 2 of [17] can again he invoked - this time with f being the orthogonal

projector of E & 0  L onto Em S E0  composed with gm - to obtain Zn e M n

such that gm(zm) e Fm . By Proposition 3.26, (z.) is a bounded sequence in

L2 (Sl,R 2 n). Therefore by (4.2), (zm) is bounded in L2 and therefore in E since
+ L+

zm L which is finite dimensional. Since F0 is L2 orthogonal to E E+ via the

definition of these spaces, (z ) is bounded in R. We claim (z;) is also bounded in

E. If not,

A(zm) = (Iz+1 2 
- 1z-1 2) +

m m

But then by property 20 of A, g,(zm) = z, for large m so z, e M- r E+ 
= M r) L+ . This

+implies z for large m, zm = 0, and (z) is a bounded sequence.impiesdzm z= M

Since (z.) is a bounded sequence, it possesses a subsequence which converges weakly

4 in E to z e E. By property 40 of A,

(5.2) P2P-gm(zm) = 0 = 8-(zm)q + PmP2B-(Zm)

and P mP2B-(Zm) has a convergent subsequence in W1 ,2 (S1 ,Rn). Hence so does q.

-28-
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Therefore pm = DP does also in L
2
(S
1

,R). Since E
0 * L

+  
is finite dimensional, it

follows that z. z in E and z e M-. Since g is continuous,

gm(zm) + g(z) P M E+ = M+ .

Now define

(5.3) C inf sup A(w)
geA weg(M

Theorem 5.4: c is a critical value of AIM with a ( c 4 a.

Proof: Since id e A, c 4 a. Moreover by Theorem 5.1, if g e A, g(M-) r) M+ 0 0.

Therefore

c ) inf A a •
M+

Finally using Remark 3.54, the proof that Z is a critical value of AIM follows the

* same lines as the proof of Theorem 4.10 and we will omit it.
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§6. An a Priori Bound for the Period

Theorem I establishes the existence of a periodic solution of (HS) as a critical

point of AIM. In this section, in a somewhat more general setting, an a priori bound

will be obtained for the period of any periodic solution of (HS) in terms of A(z) and

various constants determined from (H1 )-(H3 ). Writing (HS) in the form (2.3), the period

is 2wA; hence our a priori bound is for A.

Theorem 6.1: Suppose H satisfies (H1)-(H3) and z e CI(S1,R 2 n) is a solution of (2.3)

with A # 0. Then there are constants a )a > 0 independent of z such that

(6.21 alA(z)j • X 4x F LIA(z)l .

Proof: Without loss of generality we can assume A and A(z) are positive. Writing

(2.3) as

(6.3) p = -AHq(z)

(6.4) q A (Z)p

equation (6.4) implies

21
(6.5) A(z) A f p • K(z)dt

0

Consequently

(6.6) A(z) 4 2wA max * H ( )

and this gives the lower bound for A in (6.2).

Next from (6.3)

2w 12 2w 21

A f 1H q 2dt f 2 q dt f p. (2l + Hqpp)dt
0 0 q 0

2v1
X f p. (HqqHp - HqpHq)dt

0

or

-30-
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(6.7) 0 21 f I H q1j + (P * (H ~ H qHp)fldt

Adding b times (6.7) to (6.5) gives

(6.8) A(z) - A f (p * H + bHql2 + (bp (H H - HqqHp)]dt

0

By (H2 ), there is a y > 0 such that

IHq(Oq)I ) Y if (o,a) , D

Therefore there is a a > 0 such that

(6.9) jHq(p,q)1 > - if (p,q) e D and jpf 4 o

Making 0 still smaller if necessary, it can be assumed that

2
(6.10) p - (HqpHq - HqqHp)I ( 8 if (p,q) e V and IpI 4 a
Writing (6.8) as

(6.11) A(z -

where 11 denotes the integral of the right hand side of (6.8) over

(t e [0,2wlrljp(t)I 4 o) and 12 denotes the complementary integral, lower bounds will

be obtained for 11,12. By (6.9)-(6.11), if

E meas(t e (0,21]p(t)I C a)

then
2 2 2

(6.12) Y b(I- - - b- -

To estimate 121 let

M 1 E max lP (HqpHq HqqHp)!
zeD

and

S1.. min p Hp(z)

1 zeVIpI;'c

Then-31-
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(6.13) 12 ) (2w(O) - I)M I(2n - 2)

Choosing b w() and combininq (6.11)-(6.13) yields

(6.14) 1~)~~~()X~2 + M (21r 2)

2
21w(0)min(-, M) =K(O)

8 1

Thus the upper bound for X in (6.2) holds with = <(U)

Remark 6.15: The constant a in (6.2) depends only on CI bounds for H on V while

i depends on C2  bounds for H. To obtain an existence theorem for (HS) when H is

merely in C1 , a better estimate for a is needed. Let W(z) e Rn such that W is C1

in a neighborhood of V. Then as in (6.7) we get

27
* (6.16) 0 = [ I E(W(z) * H ) + (p (Wp(Z)H q - Wq(Z)Hp))]dt

0

Suppose W satisfies

2
(6.17) 1(z) H (z) > if z (0,q) e V

q 2

Arguinq as in (6.8)-(6.15) then yields

2
(6.18) A(z) > ()( L- X + M (2v - O)) )

8 1

where

M1=max lp-(WpH q - WqHp)I
z8V

* Therefore we get an upper bound for X of the desired type.

The existence of a W as in (6.17) follows from a result of Palais [20]. If E is

a real Banach space, 0 C E, and 4 e C (0,R), then w L E is a pseudogradient vector

for 0 at z e 0 if
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S,



(ii) 
0 (z),W> E*E N 0(9

if 0 e C (ER), ~'=(z e EIV(z) # 0}, W(z) is locally Lipschitz continuous, and W(z)

is a pseudogradient vector for all z e E, W(z) is called a pseudogradient vector field

on - Palais has proved (201.

Lemma 6.20: if 0 e c1 (E,R), there exists a pseudogradient vector field for W on C

Choosing E - R2n and using (H1 )-(H2 ), it is easy to verify there exists such a W

in our setting. Moreover by using a smooth partition of unity in the proof of Lemma 6.20

-see e.g. Lemma 1.6 of [15] it can be assumed that W is smooth. Thus the estimate

(6.2) holds even when F~ e c.
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§7. A More Refined Existence Theorem

The goal of this section is to prove

Theorem 7.1: Suppose H satisfies

(Hi) H e C1(R2nR)

and (H2 )-(H3 ). Then (HS) has a periodic solution on V H-1(1).

Proof: Since H satisfies (H), one can find a sequence of functions Hm e C2 (R2n,R)

such that Hm satisfies (H2 )-(H3 ) and Hm Converges to H in the C1  norm uniformly on

*.. compact subsets of R2n . By Theorem 1, the equation

(7.2) zm = AmJHmz(Zm)

has a 2! periodic solution zm lying on Vm EH;1(1) with A satisfying (6.2) with

constants m, am. Moreover

(7.3) -inf A(z) 4 A(z) ( sup, A(z) - am
zeM- zeM

We claim there exist constants a > a* > 0 such that

•.(7.4) a* 4 a m a •a
--m m

for all m e N and constants a > a* > 0 such that

(7.5) a*A(zm) a*A(Z)

for all large m e N. Assuming (7.4)-(7.5) for the moment, it follows that the sequence

( m ) is bounded away from 0 and -. Since Dm is near D for all large m, the

functions 7m are bounded in L (S,R2n). Hence by (7.2), (zm) is bounded in

C1(SlR 2n). The Arzela-Ascoli Theorem and (7.2) then imply that (Amz m) converges in

R x C1 (S1 ,2n) to (A,z) satisfying

Xz = AJI2 (z)

To complete the proof of Theorem 7.1, (7.4)-(7.5) must be verified. For the latter

* ineaualities, the constant a is determined from (6.6) with H replaced by Hm.

Since H, + H in C uniformly in a neighborhood of D, an a* which works for all

large m e U can be determined. The same reasoning, together with the proofs of Theorem

* 6.1 and Remark 6.15 supply an a* independent of m provided that there exists a W(z)
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#

satisfying (6.17) with H = Hm  but Y and W independent of m. Since a y exists

such that

(7.6) H q(z) ) Y2 for z = (O,q) e V,

the convergence of H, to H implies there is a k e w such that

(7.7) Hm(Z) * H (Z)
Hmq Pqg

for z - (0,q) e V. and for all m,L ; k. Therefore W can be taken to he Hkg(Z).

Lastly to check (6.4), first note that by the construction of H in §i, it can be

assumed that there are constants rl,r 2  such that Hm(z) > r1 zI2 - r2  for all z e .2
n

(independently of M). Therefore z e 1m - (1) implies that Izi ( 2W + r2)r-1 .

m L21

The proof of Lemma 4.3 then shows how to obtain U*. To get a*, we argue indirectly.

If there were no such constant, then for each m e N, there is a ; e M+ and such that

(Cm| I 0 as m *. Suppose Cm - 'nm). Then n. 
+ 0 in W1 "2 (SR nl) and a

fortiori nm + 0 in L*(S1,R n ) while &m + 0 in L2 (S1 ,Rn). Since
Vm(q) - tm(g) -fi p-q12  for small q independently of m via the definition of H in

41, m( ) * 0 as m + -. By (K 4 ) of Proposition 1.3,

Km(2) C r(1 + IzI)IpI

where r is independent of m. Consequently Km ( ) + 0 as m + -. But then

1 'Y m(C) + 0 as m +, a contradiction. The proof is complete.
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